Nature-Inspired Nanotechnology and Smart Magnetic Activation: Two Groundbreaking Approaches Toward a New Generation of Biomaterials for Hard Tissue Regeneration

نویسندگان

  • Simone Sprio
  • Monica Sandri
  • Michele Iafisco
  • Silvia Panseri
  • Monica Montesi
  • Andrea Ruffini
  • Alessio Adamiano
  • Alberto Ballardini
  • Anna Tampieri
چکیده

Today, as the need of new regenerative solutions is steadily increasing, the demand for new bio-devices with smart functionality is pushing material scientists to develop new synthesis concepts. Indeed, the conventional approaches for biomaterials fail when it comes to generate nano-biocomposites with designed biomimetic composi‐ tion and hierarchically organized architecture mimicking biologically relevant tissue features. In this respect, an emerging concept in material science is to draw inspira‐ tion from natural processes and products, which we may consider as the most advanced examples of smart nanotechnology. Natural processes of supramolecular assembly and mineralization of organic macromolecules, known as biomineraliza‐ tion, generate complex hybrid 3D constructs that are the basis of skeletons, exoskele‐ tons, nacre and shells. On the other hand, natural structures such as woods and plants exhibit multi-scale hierarchic organization that is the source of smart and anisotropic mechanical properties associated with high porosity and lightness. The association of nature-inspired nano-technological products with smart functionalization can provide new advanced solutions to critical and still unmet clinical needs. In this respect, magnetic activation of biomaterials by the use of a recently developed biocompati‐ ble, resorbable magnetic apatite promises to represent a new safe and effective switching tool, enabling personalized applications in regenerative medicine and theranostics that so far were not feasible, due to the cytotoxicity of the currently used magnetic materials. © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanosized biomaterials for regenerative medicine

This review discusses recent developments in the field of nanosized biomaterials and their use in tissue regeneration approaches. The aim is to provide an overview of the research focused on nanoparticle-based strategies to stimulate regeneration. In particular, nanoparticles improve the regenerative capabilities of biomaterials offering ways to control surface and mechanical properties. Moreov...

متن کامل

Nanosized biomaterials for regenerative medicine

This review discusses recent developments in the field of nanosized biomaterials and their use in tissue regeneration approaches. The aim is to provide an overview of the research focused on nanoparticle-based strategies to stimulate regeneration. In particular, nanoparticles improve the regenerative capabilities of biomaterials offering ways to control surface and mechanical properties. Moreov...

متن کامل

Mimicking tricks from nature with sensory organic–inorganic hybrid materials

Design strategies for (bio)chemical systems that are inspired by nature’s accomplishments in system design and operation on various levels of complexity are increasingly gaining in importance. Within the broad field of biomimetic chemistry, this article highlights various attempts toward improved and sophisticated sensory materials that rely on the combination of supramolecular (bio)chemical re...

متن کامل

Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite for bone repair application

Objective(s): Hardystonite (HT) is Zn-modified silicate bioceramics with promising results for bone tissue regeneration. However, HT possesses no obvious apatite formation. Thus, in this study we incorporated Sr and Ti into HT to prepare Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite and evaluated its in vitro bioactivity with the purpose of developing a more bioactive bone substitute material. Ma...

متن کامل

Studies Toward the Development of Orthopaedic Tissue Engineering Material Based on Self-Assembled Rosette Nanotubes

Orthopaedic biomaterials research has moved into making “smart” tissue engineered materials that can be replaced to restore normal function and integrity of bone. Conventional approaches have not been able to design and fabricate bone implants that last longer than 15 years once implanted. New materials designed to possess biologically-inspired chemistries and nanoscale architectures, which mim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018